Effects of molecular mass on the diffusion coefficient in a multiphase lattice Boltzmann model

نویسندگان

  • Elizabeth B. Liu
  • Markus Hilpert
چکیده

We introduce a simplified expression for the diffusion coefficient (D) of a multicomponent Lattice Boltzmann model. For dilute solutions, this expression is reduced to have dependence only on the molecular mass and relaxation time of the solute. By altering the molecular mass, the value of D can be varied by several orders of magnitude, thus, providing an additional parameter for use in tuning LB model values to physical systems. The ability to adjust the values of molecular mass can also be used to decrease simulation times. This is advantageous as it allows application of the LB model to solve problems that previously required prohibitive computational resources. The capability to model a wide range of diffusion coefficients and decrease simulation times is illustrated in a simple case study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...

متن کامل

Introduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients

Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...

متن کامل

Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...

متن کامل

Investigating the Effects of Mass Transfer and Mixture Non-Ideality on Multiphase Flow Hydrodynamics Using CFD Methods

A numerical framework has been proposed to model the interacting effects of mixture non-ideality and mass transfer on hydrodynamics of a multiphase system using CFD methods.Mass transfer during condensation and vaporization is modeled by chemical potential at the liquid-vapor interface. Species mass transfers are related to the diffusion at the interface which in turn is related to the conc...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011